Ditch 14 Hydraulic and Water Quality Study

Pelican River Watershed District

Detroit Lakes, Minnesota

Prepared for

Pelican River Watershed District

April 2006

Ditch 14 Hydraulic and Water Quality Study

Prepared for:

PELICAN RIVER WATERSHED DISTRICT

Detroit Lakes, Minnesota

Prepared by:

WENCK ASSOCIATES, INC.

1800 Pioneer Creek Center P.O. Box 249 Maple Plain, Minnesota 55359-0249 (763) 479-4200

April 2006

Wenck File #1311-05

Table of Contents

1.0	INTE	RODUCI	TION	****************	1-1
	1.1	Introd	uction	**********	1-1
2.0	MET	HODS		***************************************	2-1
	2.1 2.2 2.3 2.4 2.5	Subwa Hydra G.I.S. Subwa	ntershedsulic Information Land Use Information Lershed Curve Numbers		
3.0	ANAI	YSIS &	RESULTS	*****************	3-1
	3.1 3.2	Analys Results 3.2.1 3.2.2	wis		
	3.3	Other (3.3.1 3.3.2	Considerations Groundwater		3-3 3-3 3-3
4.0	CONC	LUSIO	N & RECOMMENDATION	S	4-1
	4.1 4.2	Conclu	sion	••••••	
FIGU				APPI	ENDICES
1 2 3 4	Subwa DNR I	on Map stershed I Land Use County		A B C D	Airport Alternatives Hydraulic Information Subwatershed Areas MnRAM Management Classification

Model Results: Water Quantity
Model Results: Water Quality

TABLES

2

1.0 Introduction

1.1 INTRODUCTION

The Detroit Lakes-Becker County Airport has identified two expansion alternatives that result in the filling of 24 or 27 acres of wetland adjacent to Ditch 14 in the city of Detroit Lakes, MN (Figure 1). The Pelican River Watershed District (PRWD) authorized Wenck Associates, Inc. to conduct a hydrologic and water quality study on the affect of the proposed airport expansion and wetland fill. The PRWD is concerned that the proposed fill may impact the water quality of downstream waterbodies such as Lake St. Clair and the Pelican River. The following report describes the methods, results and analysis. The report does not consider wetland mitigation requirements under the Minnesota Wetland Conservation Act or the Federal Clean Water Act.

1.2 BACKGROUND

The Detroit Lakes-Becker County Airport Commission proposed improvements to the Detroit Lakes-Becker County Airport (Wething Field) as presented in the *Final Draft Federal Environmental Assessment and Final State Environmental Impact Statement* (SEH, September 2005). The proposed expansion includes the extension of the primary runway, installation of a precision approach, completion of the full-length parallel taxiway, improvements in the terminal area, and land acquisition to accomplish the proposed improvements. The document details five runway alignment alternatives, of which one is "no-action." The preferred alternatives, as identified in the document, propose wetland fill of 24 or 27 acres (Appendix A). The proposed fill is located adjacent to Becker County Ditch 14 between Long Lake Road and US Highway 10 and immediately west of US Highway 59.

2.0 Methods

2.1 SUBWATERSHEDS

The study area includes all areas tributary to the Ditch 14-Airport wetland and the downstream extent of Ditch 14 where any noticeable impacts from the proposed filling may occur. USGS quadrangle maps and the Detroit Lakes *Stormwater Drainage Plan* (Larson-Peterson & Associates, Inc., 2001) were used to delineate subwatersheds within the study area. Figure 2 shows the subwatershed boundaries located within the study area.

2.2 HYDRAULIC INFORMATION

Minnesota DNR, City and MnDOT staff provided hydraulic information for all crossings and hydraulic structures within the study area. Three crossings were not shown on the USGS quadrangle map or the Larson-Peterson study. Therefore, the subwatershed map was updated with hydraulic information provided by each agency.

Wetland and lake storage-area relationships were determined based on DNR lake data and with a Planix digital planimeter using the USGS quadrangle maps – more accurate topographic maps were not available. Open channel dimensions were estimated based on field inspection and personal experience of PRWD and DNR staff. All hydraulic information is summarized in Appendix B.

The Detroit Lake peak discharge was obtained from the FEMA Flood Insurance Study (1986) for the 2-, 10-, 50-, and 100-year events. A discharge hydrograph was not available for each of the events.

2.3 G.I.S. LAND USE INFORMATION

After finalizing the subwatershed boundaries, Wenck contacted City staff to obtain a future land use plan. After review of the future land use plan, it was determined that much of the study area

was located out of the legal boundary of the city. The city land use plan, therefore, is not included in this analysis.

Wenck staff also obtained land use data from the DNR. The DNR data includes the entire state of Minnesota, so it provided land use data for the balance of the study area not included in the City's land use plan. The City and DNR data sources, however, do not contain comparable land use categories. For example, much of the area within the airport subwatershed (Subwatershed 12 on Figure 2) is defined as "government facilities" on the City's land use plan. Within this one category, however, there are several land uses with different runoff characteristics: MnDOT facilities, the airport and wetlands. The DNR appropriately separated these land use categories into wetlands, urban and industrial, and "transitional use." Therefore, Wenck staff decided to use only the land use data from the DNR in order to be consistent throughout the study area (Figure 3).

2.4 SUBWATERSHED CURVE NUMBERS

Using the DNR land use data and an electronic copy of the Becker County Soil Survey (Figure 4), Wenck calculated curve numbers based on land use and soil types. Composite curve numbers were calculated for each subwatershed. A curve number indicates the potential for runoff from a specific land use. Higher curve numbers indicate higher runoff potential. Subwatershed curve number calculations are provided in Appendix C.

2.5 EXISTING CONDITION COMPUTER MODEL

Wenck used the XP-SWMM computer model for hydraulic and hydrologic modeling. XP-SWMM is a dynamic, unsteady flow model that simulates the effect of storage and backwater in conduits and floodplains and accounts for the timing of multiple hydrographs to yield a true representation of the water elevation at any point in space and time. The model simulates the complete hydrologic cycle in rural and urban watersheds.

The data was entered into the computer program for the existing condition and executed. Similar models were built for the two airport alternatives. The difference between the existing and the

"Alt 1" model was that 24 acres were removed from the stage-area relationship for the Ditch 14-Airport wetland in Subwatershed 12. Similarly, the second model, titled "Alt 2," removed 27 acres from the stage-area relationship of Subwatershed 12. All other hydrologic and hydraulic information was not changed.

3.0 Analysis & Results

3.1 ANALYSIS

The Ditch 14-Airport wetland is a Type 3 (shallow marsh) wetland area and approximately 110 acres in size. Review of the 2003 Farm Service Agency aerial photo (Figure 1) indicates the wetland has very little open water with the majority of the wetland covered by emergent vegetation (i.e. cattails). Ditch 14 flows through the center of the entire wetland and continues south under Long Lake Road to Lake St. Clair.

Activities at the airport will result in the filling of some wetland acres and the potential loss of wetland habitat. The loss of wetland area could result in a loss or decline in wetland functions. One area of concern is a potential change in wetland bounce. Large fluctuations in wetland bounce can stress wetland vegetation, which can lead to a decline in water quality. Significant changes in wetland bounce can also affect the mineralization of wetland soils, ultimately increasing the rate of soil breakdown and increasing the associated phosphorus release. Another area of concern would be a decrease in wetland storage capacity, which would be seen as an increase in discharge volume. A large increase in discharge volume may include a large export of phosphorus from the wetland that could in turn have negative impacts to other lakes and wetlands downstream in the watershed.

To evaluate potential changes in wetland function, recommended management strategies from the Minnesota Routine Assessment Method for Evaluating Wetland Functions (MnRAM) were used. There are four different wetland management classifications listed in conjunction with MnRAM. The four classes are: Preserve, Manage 1, Manage 2, and Manage 3 (Appendix D). A wetland classified in the Preserve category would have a very high vegetation diversity, provide exceptional habitat for wildlife, fish and amphibians and not be significantly impacted by invasive species or human-alterations. Wetlands in the preserve category may also demonstrate unique features or would be considered outstanding resource waters. The Ditch 14-Airport

wetland already has been impacted through the creation of the Ditch 14 and therefore the Preserve management class is not applicable. The Manage 1 guidelines are established to preserve current wetland functions and values as well as habitat conditions.

The Manage 1 guidelines for hydrology recommend no more than a 0.5 ft change in wetland bounce for the 10-yr storm event. The Manage 1 guidelines for stormwater treatment recommend pretreatment of flow to the wetland and recommend a 35-50 foot buffer to protect the functionality remaining wetland from the loss of habitat due to fill. Manage 2 and 3 classifications are described in Appendix D.

3.2 RESULTS

3.2.1 Wetland Bounce

The XP-SWMM model results for discharge rate and bounce are presented in Table 1. The model results from both alternatives predict that the change in wetland bounce will be 0.1 feet for the 10-year storm, which is within the Mange 1 hydrologic guidelines. The model results show that the change in bounce under both alternatives will not change the functions and values of the wetland. Additionally, it is unlikely that the change in bounce will significantly change the soil mineralization dynamics in the wetland.

Note that there was no change in bounce downstream of Lake St. Clair where Ditch 14 crosses County Highway 6. Therefore, analysis for potential impacts to waterbodies downstream of Lake St. Clair is not necessary.

3.2.2 Water Quality

To estimate the impacts to water quality, changes in volume were examined for each airport alternative. Review of the District water quality monitoring data indicated no monitoring sites within the Ditch 14-Airport wetland. However, we can estimate a total phosphorus (TP) concentration based on typical concentrations measured in other wetlands in the watershed. If the management strategies discussed in the preceding section are followed, it is reasonable to assume that the TP concentrations will remain constant after wetland alterations. Using the assumption that the pre- and post-impact TP concentration will remain constant, changes in TP load can be

I from increases in runoff volume due to impacts to the Ditch 14-Airport wetland from lel alternative.

of 2005 water quality monitoring data from wetland sampling stations throughout the d reveals that TP concentrations range from a 20 to 192 mg/L. For our calculations we oncentration of 105 mg/L, which is a mid-point value in the range. Using 105 mg/L for and both alternative conditions, the total increase in TP load will be less than 1 lb for e four different storm type events at each of the three locations noted (Table 2). A less increase in overall TP load is not considered significant and overall impacts to water till be minimal.

THER CONSIDERATIONS

roundwater

ater flow as a result of the proposed airport alternatives. The Barr 1998 analysis A Study ntribution of Groundwater to Phosphorus Loadings for Selected Lakes in the Pelican tershed reports the Ditch 14-Airport wetland as a discharge wetland. Barr reported the of groundwater flow was generally from Long Lake southeastward to Detroit Lake. A f the flow was found to discharge to the Ditch 14 wetland complex. Wenck believes roposed alternatives may impact groundwater discharge at localized areas, but that the ng groundwater discharge to the Ditch 14 wetland complex will be maintained. It is t any groundwater flows impeded by wetland fill will be redirected around the se and continue to discharge within the wetland complex.

/WTP Discharge

of Detroit Lakes discharges treated effluent from the wastewater treatment plant to Ditch 14 just north of Long Lake Road (immediately downstream of the airport and of Lake St. Clair, Figure 1). As a result, the plant is a significant source of phosphorus Lake St. Clair. Any increase in discharge from the WWTP would obviously have an

impact on downstream water quality and would require a completely separate analysis apart from
this study.

4.0 Conclusion & Recommendations

4.1 CONCLUSION

Due to the proposed activities at the airport, slightly more than 20% of the 110-wetland acres of the Ditch 14-Airport wetland will be filled under either alternative. However, even with the loss of wetland acres, review of the model results suggests that there will not be a loss of wetland functions related to water quality. The change in bounce of the Ditch 14-Airport wetland will be within the recommended management guidelines and the overall increase in TP load will be minimal and not pose a threat to water quality.

4.2 RECOMMENDATIONS

4.2.1 Compensatory Storage

Model results indicate the existing 100-year floodplain elevation of the Ditch 14-Airport wetland is 1340.5. Wenck recommends that compensatory storage at a 1:1 ratio be required for any fill placed below this elevation. This study has demonstrated that the proposed airport expansion alone will not increase the wetland 100-year elevation by more than 0.3 feet nor degrade downstream water quality. However, because there are several property owners adjacent to this wetland, cumulative impacts due to many property owners filling parts of the wetland are a concern. For example, if two or three property owners are initially allowed to fill part of the wetland, the result may increase flood elevations to a level where fill by the rest of the adjacent property owners is not allowed. Creation of compensatory storage by each property owner will allow all property owners equal opportunity to fill and replace lost floodplain storage within the subwatershed of the Ditch 14-Airport wetland.

4.2.2 Low Floor Elevations

The model shows that the 100-year floodplain elevation will increase approximately 0.3 feet as a result of the proposed fill. This increase in elevation may impact existing homes and/or businesses that surround the wetland. Creation of compensatory storage will alleviate this

concern, as it will maintain the existing 100-year floodplain elevation. If compensatory storage is not required, a survey should be conducted to ensure that the proposed 0.3-foot elevation increase will not impact adjacent existing low floor elevations.

4.2.3 Best Management Practices

Finally, while the overall function and treatment capacity of the wetland will not be significantly affected by the filling of wetland acres, it is still recommended that BMPs be implemented to pre-treat runoff to the wetland complex. This is expected to occur according to PRWD permit requirements. Additionally, the creation of 35-50-foot buffer strips is also recommended to protect the wetland.

4.2.4 Summary

Wenck recommends the following actions to mitigate effects of the proposed wetland fill:

- 1. Require 1:1 compensatory storage for all fill below elevation 1340.5.
- 2. Require a minimum 35-foot buffer setback from the delineated wetland boundary, as future properties surrounding the wetland are platted.
- 3. Require that a MnRAM 3.0 evaluation be conducted on the wetland before and after airport expansion to ensure that all existing wetland functions and values are maintained.

Figures

PELICAN RIVER WATERSHED DISTRICT

DNR Land Use with Subwatershed Boundaries

APR 2006

Figure 3

Table 1: Ditch 14 XP-SWMM model results to evaluate bounce of waterbodies.

Location	Existing Discharge Existing Bounce	Existing Bounce	Alt #1 Discharge	Alt #1 Bounce	Alt #2 Discharge	Alt #2 Bounce
	(615)	<u> </u>	(65)			
virport	19.5	2	19.6	7	9.6	7
it Clair	0.9	9.0	6.0	9.0	6,0	9.0
N Hwy 6	23.9	1.9	23.9	1.9	23.9	1.9
0-year, 2	10-year, 24-hour event					
	Existing Discharge Existing Bounce	Existing Bounce	Alt #1 Discharge	Alt #1 Bounce	Alt #2 Discharge	Alt #2 Bounce
Cocation	(cts)	.€	(cts)	€	(cts)	(H)
iroort	30.5	2.7	31.6	2.8	31.8	2.8
Clair	6.7	1.2	6.7	1.2	6.7	1.2
N Hwy 6	74.5	3.6	74.5	3.6	74.5	3.6
on-year, z	50-year, 64-nour evenu				All the Discharge	COT THE
Location	Existing Discharge Existing Bounce (cfs)	Existing Bounce (ft)	Alt #1 Discharge (cfs)	Alt #1 Bounce (ft)	Alt #2 Discharge (cfs)	All #2 Bounce (ft)
Airport	36.4	3.2	38.4	3.4	38.6	3.5
St. Clair	21.4	2.3	21.4	2.3	21.5	2.3
N Hwy 6	125.2	4.9	125.2	4.9	125.2	4.9
100-year,	100-year, 24-hour event					L
1	Existing Discharge Existing Bounce	Existing Bounce	Alt #1 Discharge	Alt #1 Bounce	Alt #2 Discharge	Alt #2
Locallon	(cts)	(#)	(cls)	(tt)	(cls)	(£)
Airport	_	3.5	42.4	3.8	42.9	3.8
St. Clair	26.8	2.8	27.1	2.8	27.1	2.8
N Linn B		25	146.9	56	146.9	9,50

Alt. #1: Wetland fill of 24 acres in Ditch 14 wetland (Airport).

Alt. #2: Wetland fill of 27 acres in Ditch 14 wetland (Airport).

Airport = Wetland to be filled adjacent to Ditch 14

St. Clair = Lake St. Clair, downstream of Ditch 14 wetland to be filled

N Hwy 6 = Wetland downstream of Lake St. Clair - east of Hwy 59 and north of Hwy 6

Table 2: Estimates of changes in Total Phosporus load for each wetland impact alternative

2-vear, 24-hour event	iour event						
	Estimated TP	Existing Vol	Predicted		Predicted		Predicted
Location	Concentration	(ac-ft)	TP Load	Alt #1 Vol	TP Load	Alt #2 Vol	TP Load
	(mg/L)	(n. a.a.)	(sql)	(ac-ft)	(sql)	(ac-ft)	(lps)
Airport	0.105	28.46	8.13	28.46	8.13	28.46	8 13
St. Clair	0.105	33.04	9.44	33.04	9.44	33.04	2 7
N Hwy 6	0.105	38.35	10.95	38.35	10.95	38.35	10.95
10-year, 24-hour event	hour event						
	Estimated TP	Daioting 1701	Predicted		Predicted		Dradictad
Location	Concentration	Existing vol	TP Load	Alt #1 Vol	TP Load	Alt #2 Vol	TP Load
	(mg/L)	(40.11)	(lps)	(ac-ft)	(lps)	(ac-ff)	(lhs)
Airport	0.105	94.64	27.03	94.82	27.08	94 84	27.09
St. Clair	0.105	45.17	12.90	45.28	12.93	45.30	12.94
N Hwy 6	0.105	59.67	17.04	59.78	17.07	59.79	17.08
50-year, 24-hour event	hour event						
	Estimated TP		Predicted		Dradicted		Contraction
Location	Concentration	Existing Vol	TP Load	Alt #1 Vol	TP Load	Alt #2 Vol	TPload
	(mg/L)	(ac-1t)	(sql)	(ac-ft)	(sql)	(ac-ft)	(hs)
Airport	0.105	185.70	53.04	185.93	53.10	185.97	53.11
St. Clair	0.105	167.05	47.71	167.29	47.78	167.34	47.70
N Hwy 6	0.105	190.47	54.40	190.71	54.47	190.75	54 48
100-year, 24	100-year, 24-hour event						
	Estimated TP	Existing Vol	Predicted		Predicted		Predicted
Location	Concentration	(a).f	TP Load	Alt #1 Vol	TP Load	Alt #2 Vol	TP Load
	(mg/L)	(ii an)	(sql)	(ac-ft)	(lps)	(ac-ft)	(sql)
Airport	0.105	247.38	70.65	247.37	70.65	247.37	70.65
St. Clair	0.105	265.66	75.87	266.24	76.04	266.32	76.06
N Hwy 6	0.105	294.48	84.10	295.06	84.27	295.14	84 29

Alt. #1: Wetland fill of 24 acres in Ditch 14 wetland (Airport).

Alt. #2: Wetland fill of 27 acres in Ditch 14 wetland (Airport).

Airport = Wetland to be filled adjacent to Ditch 14

St. Clair = Lake St. Clair, downstream of Ditch 14 wetland to be filled

N Hwy 6 = Wetland downstream of Lake St. Clair - east of Hwy 59 and north of Hwy 6

Appendix A

Airport Alternatives

Appendix B

Hydraulic Information

1 Sallie Pond number Area (in²) Contour Area (acres) 1329 (DNP) 1246 1330 1300 1335 1325 Rating Curve? Outlet structure: Outlet structure: Crown elevation Crown elevation Invert elevation Invert elevation Slope Slope n n Outlet structure: Outlet structure: Crown elevation Crown elevation Invert elevation Invert elevation Slope Slope n n Munson 17 Pond number Area (in2) Contour Area (acres) T23 DN/R_ 1332 US65 1340 165 18"CMP Outlet structure: Outlet structure: Crown elevation Crown elevation 1333,2 1337.0 Invert elevation Invert elevation 1332.61 Slope Slope n 0.024 n Outlet structure: Outlet structure: Crown elevation Crown elevation Invert elevation Invert elevation Slope Slope n n

Pelican River e Pond number Contour Area (in²) Area (acres) 2:156pen Outlet structure: 12'x/2' box
Crown elevation
Invert elevation
Slope

Outlet structure: 12'x/2' box

NWL= 13 33.17 Outlet structure: Rahry Cune?
Crown elevation Invert elevation Slope Slope 1329,20 n n Outlet structure: Top Road 25'
Crown elevation Outlet structure: Crown elevation Crown elevation Invert elevation Invert elevation 1350.64 Slope Slope n n Pond number 2 Muskrat Area (in²) Contour Area (acres) (DNR) 332 1340 Outlet structure: Rating Curve Outlet structure: Crown elevation Crown elevation Invert elevation Invert elevation Slope Slope n n Outlet structure: Outlet structure: Crown elevation Crown elevation Invert elevation Invert elevation Slope Slope n

	Pond number	5	Hury	b
			O	
	Contour	Ai	rea (in²)	Area (acres)
	1332.5	10'ba	Horn ×2150	0.49
	1337.5°	3 / de	еер	1.5
	1340			66
Outlet struc	oture: 60°RCP	-741	Outlet structur	e: Road - 25' wid
Crown elev	ation	_ + +	Crown elevation	e. <u>4020 - C</u> S WCOS
Invert eleva	ation 1332,54	4	Invert elevation	م مساد سسد
Slope	13 32,20		Slope	
n 0.01	S		n	
Outlet struc	ture:		Outlet structure	e;
Crown elev		_	Crown elevation	
Invert eleva	ition		Invert elevation	า
Slope n			Slope n	
		1		
	Pond number	4	Monitor	5 Station
		1	100.00.	
	Contour	Λ ==	na (in²)	Area (2012)
Rc -	Contour ≫	/D'	ea (in²) bo Hom	Area (acres)
, , ,	Natural	2:1	Slopes	
	Channel		deep	<u> </u>
		30'	θρ'	
•				
Outlet struc		we	Outlet structure	9 ;
Crown eleva	ation	_	Crown elevatio	
Invert eleva Slope	tion		Invert elevation	i
u Siohe			Slope n	
Outlet struct		-	Outlet structure	
Crown eleva			Crown elevation	
Slone	liot i		Slope	

Slope

n

Slope

n

	Pond number	7 H	uz 59	
- - -	Contour /3330 1338	Area (in²) 5'60 Hom x/600 5'deep*	Area (acres)	1.3
- - -	1340		0.92 39	1
Outlet structu	re: 60"RCP-96'			
Crown elevation Invert elevation Slope	on	Outlet st Crown e Invert ele Slope n	levation	
Outlet structur Crown elevation Invert elevation Slope n	on	Outlet str Crown ele Invert ele Slope n	evation	
Ро	nd number	6 St. C	Hair	
RC →	Contour	Area (in²)	Area (acres) 140 (I) NR 250)
Outlet structure: Crown elevation Invert elevation Slope n	Rating Cure?	Outlet struct Crown elevati Invert elevati Slope n	tion /333.00	,
Outlet structure: Crown elevation nvert elevation Blope		Outlet structu Crown elevation Invert elevation Slope	ion	

		D	1 0	1 / 3		
		Pond number	1 7	Long.	ake	
O.	utlet from USG-5	Contour → LC → → 1350	Are	a (in²)	Area (acres) 357 (£ 413	NR)
	Outlet structions of the control of		?	Outlet struct Crown elevat Invert elevat Slope n	ure: Dam- tion ion assume	3 bays 5' wide 5 1349,38 1349,32
	Outlet structors of the control of t	ation //	- 8	Outlet struct Crown elevat Invert elevat Slope n Cheryl	tion ion 1348, 48" ore DS of d	x 36" CMA 30'long
		Contour 1337 1340		a (in²)	Area (acres) 7,6 31	- - - -
	Outlet struct Crown elevel Invert elevel Slope n Outlet struct Crown elevel Invert elevel Slope n	ation 1337.03 /336.72 3 cture:	-	Outlet structi Crown elevati Slope n Outlet structi Crown elevati Slope Invert elevati	tion ion ure: tion	

14 @ Long Lake Rd Ditch 10 b Pond number Area (in²) Area (acres) Contour Outlet structure: Outlet structure: Crown elevation Crown elevation 1336,67 Invert elevation Invert elevation 36" RCP 88' Slope Slope n Outlet structure: Outlet structure: Crown elevation Crown elevation Invert elevation Invert elevation Slope Slope n n Willow LD Pond number Area (acres) Area (in²) Contour 5'wide bottern x 3500 = 0.38 5' Leep ditch (2:1) = 30 ac 1340 48ac Outlet structure: Outlet structure: Crown elevation Crown elevation 1336,34 15" CMP 1332,69 Invert elevation Invert elevation 36" CMP Slope Slope n Outlet structure: Outlet structure: Crown elevation Crown elevation Invert elevation Invert elevation

Slope

n

Slope

Pond number 12	Ditch 14 e Airport Ro
Outlet invest = 5'	ea (in²) Area (acres) wide bottom x 3800' = 0.44 ac bopes (9'uide) = 2.2 99ac 130 ac 2' der
Outlet structure: Crown elevation Invert elevation Slope n	Outlet structure: Crown elevation Invert elevation Slope n
Outlet structure: Crown elevation Invert elevation Slope n	Outlet structure: Crown elevation Invert elevation Slope n
Pond number 10 a	Ditch 14 @ Sludge Pond RD
Contour A Wateral Channel 5 wide bottom 2:1 sideslopes 5' deep 25' top	rea (in²) Area (acres) 800' Long
Outlet structure: Crown elevation Invert elevation Slope n Outlet structure:	Outlet structure: Crown elevation Invert elevation Slope n Outlet structure: Crown elevation

Invert elevation

Slope n

Invert elevation Slope n

Outlet structure: Crown elevation

	Pond number	14	lail r	oad N	
	Contour	Aı	rea (in²)	Area (acres)	
	j.				
Outlet c	tructure: 60 "CMP		Outlet etrue	tura.	
Crown 6		— 54′	Outlet struc Crown eleva		
Invert el	evation	57	Invert eleva		
Slope			Slope	•	
n \mathcal{N}_{z}	otshown on plane	- indespolat	to n		
Outlet s	•		Outlet struc	ture:	
Crown e			Crown eleva		
Invert el Slope	evation		Invert eleva	tion	
n			n		
		•			
				1	
	Pond number	13	Hung 1	D+RR	
	Contour	Δη	ea (in²)	Area (acres)	
	Contour	710	za (III)	Alea (acies)	
	104.00	<i>() </i>		124 211	. 0
Outlet st Crown el	ructure: 60 ° cmP -	<u> </u>	Outlet struct Crown eleva	ture: /8" 74' Cl	Mr
Invert ele		_>	Invert elevat	iion 12441.8	assum
Olan-			01	ation 1344. C 8 1344. 66	1 h vert
7 0.000	5hours on plano-	nterpolati	in 0.024		
n	DIAMAN ON DISCOUL			1811 - V	•
n mass	ructure: 36/1 CMP 15	ኔ ራ ኔ '	Outlet struct	ure: 10 76 cm	P
Outlet str	ructure: 36" cmp 18 evation	<u>3</u> 8'	Outlet struct Crown eleva		P
Outlet str Crown el Invert els	ructure: 36" CMP, 18 evation evation 1341,65	<u>3</u> &'	Outlet struct Crown eleva Invert elevat	ition '	P
Outlet str Crown el Invert ele	ructure: 36" cmp 18 evation	<u>3</u> 8'	Outlet struct Crown eleva	ition '	1P

	Pond number	16- Mud L	ke
	Contour	Area (in²)	Area (acres)
	1348	Mud Lake	27.0
	1350	Wetland	302.0
	1355	Interpolated	367.3
Dutlet stru	icture: 36" RCP		ure: 36 PCP
Crown ele		Crown eleva	
	ration 1348.26	invert eleval رے 'و2 کے	
	out = 1347.54	Slope	out 1347.54
ו		n	0.013
Outlet stru	octure:	Outlet struct	ure:
Crown ele	vation	Crown eleva	tion
nvert elev	ration	Invert elevat	ion
Slope		Slope	
•		n	
•	Pond number	n /5	,
•	Pond number		
•	Pond number Contour		Area (acres)
•		/5	69
•	Contour	/5 Area (in²)	
•	Contour	Area (in²) Wetland	69
*	Contour	Area (in²) Wetland	69
•	Contour	Area (in²) Wetland	69
1	Contour 1350 1355	Area (in²) Wetland	69
	Contour 1350 1355	Area (in²) Wetland Intepolated	90
Dutlet stru	Contour 1350 1355 1355 cture: Beim	Area (in²) Wetland Thepolated Outlet struct	### 69 90
Outlet struc	Contour 1350 1355 1355 cture: Beim	Area (in²) Wetland Intepolated	Jre:
Outlet struction eleven	Contour 1350 1355 1355 cture: Beim	Area (in²) Wettland Thicpolated Outlet struct Crown elevation	Jre:
Outlet struction elevancert eleva	Contour 1350 1355 1355 cture: Beim	Area (in²) Wet land This polated Outlet struct Crown eleva	Jre:
Outlet struc Crown elev nvert eleva Slope	Contour 1350 1355 cture: Bern vation ation /351.0	Area (in²) Wettand Tht polated Outlet struct Crown elevati Slope n Outlet struct	ure:
Outlet struc	Contour 1350 1355 cture: Been vation ation /3 51. 0	Area (in²) Wettland Thispolated Outlet structe Crown elevate Slope n Outlet structe Crown elevate	ure: tion on
Outlet structions of the control of	Contour 1350 1355 cture: Bern vation ation /3 5/. 0	Area (in²) Wettand Thispolated Outlet struct Crown elevati Slope n Outlet struct Crown elevati Nore elevati Nore elevati Nore elevati	ure: tion on
Outlet structions of the control of	Contour 1350 1355 cture: Bern vation ation /3 5/. 0	Area (in²) Wettland Thispolated Outlet structe Crown elevate Slope n Outlet structe Crown elevate	ure: tion on
utlet structions elevated structions elevated structions elevated	Contour 1350 1355 cture: Bern vation ation /3 5/. 0	Area (in²) Wettand Thispolated Outlet struct Crown elevati Slope n Outlet struct Crown elevati Nore elevati Nore elevati Nore elevati	ure: tion on

Samp Street

100

I

		Pond number	18	FOX	<u></u>
		0	۸۰۰	o /in²\	Area (acres)
		Contour	Ale	a (in ²)	135 DNR
		1332			181 4565
					7 07
C	Outlet strue	cture: Channel	(DNP)	Outlet structure	
C	rown elev	/ation	_	Crown elevation	1021 90
Ir	nvert eleva			Invert elevation	•
S	Slope	15' , ide ,	/	Slope	1331.90
n		15' wide (as	souned)	n 0.024	25' Long
_				Outlet etructure	: Coad
	outlet stru		-	Outlet structure Crown elevation	
	rown elev			Invert elevation	_
	nvert eleva	auon		Slope	1222-0
	Slope			n	
n					
				1	
•					
		Pond number			
				2.	A (
		Contour	Are	a (in²)	Area (acres)
				Outlet structure	The state of the s
C	Outlet stru	cture:		Olhi	_
	Outlet stru Crown elev			Crown elevation	
Ċ		vation		Invert elevation	
C Ir	Crown ele	vation	-	= :	
C Ir	Crown ele nvert elev Glope	vation		Invert elevation	
Ir S n	Crown ele nvert elev Glope I	vation ation		Invert elevation Slope n	
Ir S n	Crown ele nvert elev Glope I Outlet stru	vation ation cture:	_	Invert elevation Slope n Outlet structure	»:
lr o o	Crown eler nvert elev Blope I Dutlet stru Crown eler	vation ation cture: vation	_	Invert elevation Slope n Outlet structure Crown elevation	n:
ir s n <u>C</u>	Crown eler nvert elev Slope I Dutlet stru Crown eler nvert elev	vation ation cture: vation	_	Invert elevation Slope n Outlet structure Crown elevation Invert elevation	n:
ir s n <u>C</u>	Crown eler nvert elev Blope I Dutlet stru Crown eler	vation ation cture: vation	_	Invert elevation Slope n Outlet structure Crown elevation	n:

AUG 1 2 1985

NNESOTA DEPARTMENT OF NATURAL RESOURCES DIVISION OF WATERS

PROJU	- c	ong Lake	,			LAKE NO	3-383
	AR Detro		_ Becker	C O i	UNTY	REQ. NO	85-105
AT / Sinter	4 K						
	SE SURV		INVESTIGATIO			ENANCE ONNAISSAN] c e
TYPE	LEVELS	X TOPOGE	RAPHY	нм\онм []	<u>'</u>	O	
		HYDROG	RAPHIC	WORK	REPO	RT	
		Survey crew:	July 17, 1985 Scherek, Potoc	nik, Scott			
		Daţum: NGVE Vertical cont) 1929 trol: By water natchery at Sall ft of 2 structur	transfer and	FRAN ULA	V OH FIAME A	Q11110010000
	Ottertail meandered. easterly t	River Watersho It outlets (o St. Clair Lo	Section 5 - T13 ed Unit. It is on the east side ake. There is a from the prese drographic Unit	e (in the SE a 3 bay old at waters ed	-NE-SW o type "C' lge. No	of Sec. 32); 'concrete da previous sur	South- am located
	Our survey and pertin	work at this ment elevation lion. We foun	time included s on the dam. d the following	an outlet pr We also comp :	ofile do	nwnstream to	the dam .O.H.W.
	Brooks	t · ·	" At the	outlet"			
	•••	C Jona Jak	0				1350.46
	Present re	na of channel)	t channel on sa	nd, 39' dowr	nstream	from	1349.6 . 1349.2
	C channel	at upstream s	ide of dam				1349.95
	Headwater	at dam					1349.91
	Tailwater	at dam	ont of dam				1356.10
	lop left	end left abutm	ment of dam				1355.48
	iop right	end left abut	MICH OF GUM				1349.45
	Sill, Bay Top of pi	er between Bay	/s 1 & 2				1354.24 1349.38

<u>July 18, 1985</u> DATE

S.11, Bay 2

000 of HW gage

Top of pier between Bays 2 & 3

5:11, Bay 3 Top left end right abutment

Top right end right abutment of HW gage

∕John M. Scherek

Survey Crew Supervisor

1354.17

1349.32

1355.32 1355.36

1349.61

1345.80

Note: There are no stoplogs in the dam. The entire outlet channel upstream of the dam has a sandy bottom and there are presently several spots within 0.1' - 0.3' of the runout elevation. Consequently the runout elevation and the location could vary somewhat from time to time.

" O.H.W. - N.O.H.W. evidence"

Toe of berm in lake	1349.9
Tog of lake bank	1351.0
	1351.2
Recent washine	1352.4
Top of take bank	1353.2
loe of steep bank	1351.0 & 1351.3
HWM's (stains on boulder)	1351.2
O.H.W.	1331.2

Note: We also found evidence indicating a N.O.H.W. of 1353.2

In conjunction with our levels we set the following B.M. at Ridgewood Resort on the south end of the lake:

Bent 60d spike in the east base of a 2.1' oak,42' east of NE corner of red cabin (6th cabin south of main office), 29' NW of C of gravel road nearest the lake,and at the NW corner of the easterly trailer parking area: Elev.=1356.20.

		Minn	iesota D	NR Wat	ers	
		Fie	eld Surv	ey Repor	rt	
Project MUNSO	N LAKE			· ·	Lake No. 3-35	7
City NR. DETROI	T LAKES	County	BECKER		Req. No. 2003-	72
Sec. 5.8	Twp.	138	Rng. 41	Wate	ershed OTTER T	AIL RIVER
SURVEY DA' E: 4/2/03						
SURVEY CREW: Scher	ek, Schaffe	er				1
LAKE SIZE Meandered A Planimetered		Acres Acres		Non-meand Unknown	ered	
DATUM ADJUSTMENT Assumed	□ 1912	⊠ 1929	□ 1988	Source:	DNR Waters B.M	. at Sallie Lake
Elevation, 13'	27.42				f E ½ of E ½ of Se w bridge over inle	c. 8) t from Muskrat Lake
SURVEY WORK COMPLI levels establish	□ topog	5 I2 J	□ cross secution		profiles 🔯 other: photographs	OHW
WATER LEVELS Highest Red Lowest Red Range:			(Vater Surface DHW Elev: 1: Highest Knov		
	+1-	ence southe escription:	rly to Sallie 1333.2, on :	Lake	nt (sand & gravel)	er Woodland Lane, at upstream end of an
BENCHMARKS SET Location: at Elevation: 1: Description: Location: Elevation: Description:	337.47 vertical 3/8 of the edge path (grave	3" x 8" spike e of the bitu	in the wes	t root of a lea	ning 1.7' basswood land Lane and 64' :	1, 18' lakeward (NW) S-SW of the access
Prepared By John	ı M. Scherc	K TAB	<u>}</u>	Title S.C.S	ò.	Date 4/10/2003

Due to the nature of the shoreline around most of this lake (steeper and/or abrupt banks at the waters edge), suitable tree evidence was limited. The O.H.W. level is based on the average reduced elevation of the 12 best trees of the 16 which we documented (elm, ash, basswood & cottonwood). No stainlines or washlines were observed. The water level of the lake is shown at 1332 on the 1959 (photorevised 1982) USGS quadrangle.

Following are the elevations we found at the outlet:

Water-level, Munson Lake	1333.99
0+00 Bottom at beginning of outlet channel	1332.0

Note: There is some loose bog accumulated at the beginning of the channel, but it does not act as a restriction.

0-24 Channel bottom	1332.1
0+48 Channel bottom	1331.8
0+68 Channel bottom at upstream side of a wooden bridge	1332.9
0÷73 Top center of wooden bridge	1335.5
0+78 Channel bottom at downstream side of bridge	1332.7
0+99 Flowline on solid sediment (sand & gravel) at upstream end of 18" C.M.P.	1333.2
under Woodland Lane - present runout	
Top bent upstream end of culvert	1334.71
Headwater at culvert	1333.99
1+21 Centerline of road over culvert	1337.0
1+39 Top downstream end of 18" C.M.P.	1334.11
Downstream invert	1332.61
Downstram mixet	
Channel bottom below culvert	1331.6
	1331.6 1332.38
Channel bottom below culvert	
Channel bottom below culvert Tailwater at culvert	1332.38
Channel bottom below culvert Tailwater at culvert 1+64 Channel bottom	1332.38 1331.9

Three photographs were taken at the outlet, one looking at the upstream end of the culvert, one looking upstream at the wooden bridge and one looking at the downstream channel. We also searched for, but could not locate, either of the 8/12/65 Game and Fish benchmarks.

DRAWING NO.

3-357 MUNSON LAKE

Detroit Lokes

NEAR DETROIT LAKES-BECKER COUNTY OUTLET PROFILE Sec. 8 T. 138 N. R. 41 W. Req. 2003-72

> SURVEY SIL

> > N 8 C I T

Datum: NGVD-1929 Checked: GY

JMS 4/2/03 DDS 6/24/03

Survey: Drawn:

DNR Waters

LOCATION MAP

Scale 1' = 1 Mile

1330 1335 1340 W.S. 1332.36 F10# -Centerline Woodland Land at Station 1+21 Top=1337.0 68+ Invert=1332,61 W.S. 1332.38 Top=1334.11 6Ω+ Ì CULVERT -- 18 -- CMP Runout=1333.2
At flowline on solid sand and gravel. 33.2 FLOWINE 664 W.S. 1333.99 17.25 ₽Z÷ 89+ 25 8 Centerline Wooden Bridge At Station 0+73 Top=1335.5 84-**≯**Z· 00 m 32.0 į ,325 1340 1335

) 0

Scale: Horizontal 1" = 50' ດ້ Vertical 1" =

ليا 0 α Ω ليا

NA-02684-03 Rev. 8/90

REQUISITION FOR SURFACE WATER/HYDROGRAPHIC **SERVICES**

APR 11 2003

DIVISION OF WATERS DETROIT LAKES, MN

Project FOX LAKE	,	***************************************			Lake No.	3-358
City NR. DETROIT LA	KES .	County BECKER			Req. No.	2003-71
Sec. 7, 18	Twp.	138	Rng.	41		Quad No. K-6c

Statement of Problem/Situation (P.	Provide detailed information)
------------------------------------	-------------------------------

This lake is in close proximity to Detroit Lakes and has been gauged since 1992. An O.H.W. level would be beneficial for future shoreland management of the lake.

Services Requested (Attach map as necessary)

- 1) O.H.W.L. determination.
- 2) Pertinent outlet elevations.
- 3) Photographs.
- 4) Tie survey to NGVD 1929 as per lake gauge R.M.
- 5) Establish additional B.M.(s) as necessary.
- 6) Tie in 8/12/65 Game & Fish B.M. if possible.

Landowner(s):

Permission obtained for access: □Yes □ No

Requested By	John Scherek for Bob Merritt	Date 3/28/03	Phone No.
Approved by			Date
Approved	Glen Yakel		Date 3/28/2003

				esota Di			
			Fie	eld Surve	y Kepo	Lake No. 3-358	
• J	FOX LAKE					Req. No. 2003-7	
ity NR.	CETROIT L	AKES	County			ershed OTTER T.	
ec. 7, 1	.8	Twp.	138	Rng. 41	Wate	ersneu OTTERCT	
URVEY DAT	τ∈: 4/1/03						
URVEY CRE	ew: Scherek	Schaffe	er				
AKE SIZE Me: Plar	andered Area nimetered Ar	1 155 ea 149	Acres Acres		Non-meand Unknown	lered	
LDA MUTAC	JUSTMENT Assumed	□ 1912	⊠ 1929	□ 1988	Source	: DNR Waters lake	gauge R.M.
Tinc	BENCHMARK cation: on eas vation: 1341 scription: NV ado	.83 7 comer	of concrete	E-NW-SE, S slab for hot x Lake Road	tub on lakes	1) side of Brad Green (gauge reader) home,
SURVEY W ⊠ ⊠	ORK COMPLETS levels stablish be	□ topo	graphy ks ⊠ c	cross secontlet elevation		⊠ profiles ⊠ other: photographs	OHW
L F	Highest Reco Lowest Recor Range: 0.79' (5/6/92	ded: 13 period of to pres	33.38, 9/6/9 of record, ent)	92 (OHW Elev: Highest Kn	own: 1334.17	
OUTLET G R	General Descr	iption: 0 ! ion and	on south side Sallie Lake Description	1222 2 chs	annel botton	Sec. 18-138-41), so n 14' downstream fr n 98' downstream	utherly via a channel to om beginning; also at a
	,	37.62 norizonta waters ea	al 3/8" x 8" dge, 52' E-S	_	ove ground `bituminous	: . 4 - N NE cide of	a 1.5' ash, 11' from e Lake Drive and 64'
102					"		
Prepar	ed By		erek JM	15 J	Title	C.S.	Date 4/11/2003

Due to the nature of the shoreline around most of this lake, suitable tree evidence was limited. The O.H.W. level is based on the average reduced elevation of the 7 best trees of the 10 which we documented (elm, ash, cottonwood & aspen). No stainlines or washlines were observed. The water level of the lake is shown at 1332 on the 1959 (photorevised 1982) USGS quadrangle.

Following are the elevations we found at the outlet:

Water level, Fox Lake	1333.87
0+00 Bottom in lake	1332.5
0+12 Bottom in lake	1332.1
0+19 Bottom at beginning of outlet channel	1332.7
0+28 Channel bottom at remnants of a beaver dam	1333.0
0+33 Channel bottom (very solid) - present runout	1333.2
0+43 Channel bottom	1333.0
0+55 Channel bottom	1333.1
0±70 Channel bottom	1332.8
0+82 Channel bottom	1332.9
0+96 Channel bottom	1332.8
1+17 Channel bottom (at an accumulation of sediment and debris)	1333.2
Headwater at accumulation	1333.82
Tailwater at accumulation	1333.59
1+24 Channel bottom	1332.5
1+36 Channel bottom	1333.0
1+48 Channel bottom	1332.4
1-60 Channel bottom	1332.2
1+72 Channel bottom	1332.6
1+84 Channel bottom	1332.6
1+96 Channel bottom	1332.3
2+08 Channel bottom where it enters a small ponded area	1331.6
Water level of ponded area	1333.39
are as at a second of an area and a second area.	roximataly 50! from

Note: No distance was measured, but the channel leaves the ponded area approximately 50' from the above shot. As such, the stationing is approximate from that point on.

≈2+58 Channel bottom where it leaves the ponded area	
	1332.7
Top of dam at left side of breach	1333.5
Top of dam at right side of breach	1333.5
	1333.30
Tailwater at beaver dam	1333.04
2 2 Chamio Octom	1332.0
≈3+74 Channel bottom	1331.7
≈4+24 Channel bottom	1331.7
≈4+99 End of upstream apron of a 2.4' x 1.6' metal arch culvert under Pebble Beach Lane	1332.07
Fivert at upstream culvert opening	1331.98
Top upstream end	1333.68
Headwater at culvert	1332.61

≈5+15 Centerline of road over culvert	1335.6
≈5+30 Top downstream end of culvert	1333.49
Downstream invert	1331.90
End of downstream apron	1331.94
Channel bottom below apron	1331.2
Tailwater at culvert	1332.13

Note: The entire channel between the lake and the culvert has a very irregular bottom

Two photographs were taken, one looking downstream at the beginning of the outlet channel and one looking at the beaver dam downstream of the ponded area. We searched for, but could not definitely locate, either of the 8/12/65 Game and Fish benchmarks.

Appendix C

Subwatershed Areas

Soil Type A Land Use (Acres)

		Soil,	nes						· A				T											Ţ
	77	- 0)	Sand Dunes	n C	9.5	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	00	9 0	0.0	0.0	0.0	
	81	Urban and		00	0.00	0 0	0.0	0.0	4.9	0.0	5.0	4 t x	0.0	0.0	17.1	10.3	38.8	0.0	15.1		0.0	5.0	0.0	
	. 65	Transitional Agricultural	Land	60	0.0	0.0		0.0	0.0	0.0	0.0	00	200	0.0	0.0	0.0	57.9	0.0	3.5	0.0	0.0	0.0	0.0	
	30	Grassland- Shrub-Tree	(snonploap)	1		0.0	7.6	0. 5	3	1.7	0.0	0.0	20	1 0.	4.7	0.0	18.8	0.0	0.0	00	0	0.0	2.6	
	46	ts Residential SI Development	Complex	29.1	0.0	00	0.0	200	0.0	0.0	0.0	0.0	8.3	200	0.0	0.0	0.0	0.0	0.0	0.0	0.1	10.7	77.0	_
	92	Gravel Pits and Open	NIII IGS	0.0	ı	0.0	17			0.0	0.0	0.0	0.0	200	0.0	0.0	0.0	3.9	0.0	0.0	C	0.0		=======================================
	46	Other Rural Developm	ents	0.0	0.0	1.0	2.0	00	2 7	-	0.0	0:0	0.5	00	0.0	0.0	2.9	0.9	0.0	3.8	4.3	0 0		-
	59	Farmsteads and Rural Residences	Populopinos :	2.1	1.0	9.0	2.7	0.0	1.1	- 0	0.0	0.0	3,5	0.0	2.0	0.0	8.0	0.4	4.7	9.0	4.1	2.7	i	===
	30	Deciduous Forest		142.9	41.2	8.9	61.1	14.9	17.9	0.70	27.0	9.7	67.0	13.7	30.1	750	10.0	34.4	27.6	44.2	124.8	39.7	101	- 1
	30	Grassland	1 11	((./	2.2	6.1	4.6	0.8	23.8	40.0	12.2	0.1	20.4	13.9	3.7	418	70.7	10.3	34.3	5.9	68.0	8.6	38	2
	65	Cultivated Land	7	7.1	0.0	9.0	4.3	12.3	8.4		5.7	9.7	12.0	0.0	0 0	4.7		0.0	0.0	15.2	20.7	1.8	17	-
and long	Curve Number	Subwatershed ID	•		7.	က	4	5	9	7	- 0	0	6	5	1	12	12	2 7	4.7	C1	16	17	18	

Soil Type B Land Use (Acres)

	oil, and es			T			Ī												T
98	Exposed Soil, Sandbars, and Sand Dunes	3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	
88	Urban and Industrial	0.0	0.0	0.0	0.0	9.3	0.0	21.3	18.8	0.0	6.9	66.7	32.1	0.0	25.1	23.5	13.6	0.0	0
. 22	Transitional Agricultural Land	0.4	3.8	0.7	10.5	0.0	0.0	0.0	0.0	57.9	0.0	0.0	6.09	0.0	7.6	0.0	0.0	9.0	
. 48	Grassland- Shrub-Tree (deciduous)	10.5	i	0.0	0.0	0.1	12.1	0.0	0.0	13.1	2.3	0.0	3.4	0.0	0.0	0.0	4.7	8.9	L C
65	ts Residential S Development (c	26.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	77.4	0.0	0.0	0.0	0.0	7.1	0.0	17.5	7.8	1
85	Gravel Pits and Open Mines	0.0		0.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	14.3	6.0	0.0	0.0	0.0	0.0	2.7
65	Other Rural Developm ents	0.0	0.8	9.5	7.1	0.0	0.3	0.0	0.0	32.3	0.0	0.0	9.0	1.9	0.0	11.2	14.6	4.4	
74	Farmsteads and Rural Residences	6.7	4.0	5.1	4.9	0.3	12.0	0.0	0.0	24.4	0.7	0.1	2.5	0.8	4.7	4.3	11.3	4.6	77
55	Deciduous Forest	142.2	59.3	8.5	46.3	16.3	65.7	20.8	7.4	334.2	20.6	33.0	23.2	8.1	12.2	24.0	55.6	69.4	434.9
58	Grassland	75.8	8.2	19.1	14.5	3.3	39.9	9.1	12.8	319.7	11.0	15.1	115.1	15.6	33.9	15.6	96.4	27.4	0 60
75	Cultivated Land	163.4	1.0	23.3	27.9	5.0	199.9	1.0	24.1	553.6	6.0	0.0	38.1	1.2	0.0	40.9	169.7	125.0	1797
Land Use Curve Number	Subwatershed Id	•	2	3	4	5	9	7	æ	თ	10	11	12	13	14	15	16	17	20

				T	Т	Т							Γ	Ι	Г	I	Γ	Γ		1	T	
	91	Exposed Soil, Sandbars, and	Sand Dunes	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	91	Urban and	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0.0	0.0
	82	Transitional Aoricultural	Land ·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00		0.0	0.0
	65	Grassland- Shrub-Tree		0.0	0.0			0.0				0.0	0.0	0.0	6.0	0.0	0.0	00	c	0.0	0.0	0.0
	7.7	Pits Rural Residential	Development Complex	9.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	OO	o o	0.0		0.0	0.0	0.0
	68	Gravel Pits	Mines	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	000	000	200	000	0.0	000	0.0	0.0	0.0
	77	Other Rural	Developm ents	0.0	0.0	0.0	13.9	0.0	0.3	0.0	00	0.0	000	000	0.0			0 0		0.0	0.0	0.0
	82	Farmsteads	Residences	0.0	0.0	0.0	7.1	1	0.0	0 0	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	20	Deciduous	Forest	3.9	0.0	0.0	69	116	0.0	0.0	0.0	000	0.0	0.0	0.0	2.5	0.0	0.0	2.0	0.0	3.1	0.8
(20, 10, 1)	71		Grassland	0.0	0.0	0.0	00	3.1	0.0	2.0	0.0	9.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0
alla Coc	80	Cultivated		0.0	0.0	000	333	25.8	20.0	- 0	0.0	0.0	0.0	0.0	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0
Soll Type o Land OSC (Police)	Land Use Curve Number			+	- 6	1 4	> <	ן ע	0	7 0	~ 0	ρ	6	10	11	12	13	14	15	16	17	18

Soil Type D Land Use (Acres)

·		_									_					_			
86	Roads	19.3	5.7	0.1	1.6	2.6	6'9	1.8	8.0	29.8	8.0	10.3	12.9	3.8	7.5	5.1	11.2	8.9	9.2
98	Wetland	9.6	4.1	6.4	18.0	40.9	54.2	24.6	7.4	53.1	0.0	9.99	90.1	0.0	0.0	0.0	104.0	19.6	11.9
100	Water	1269.0	70.8	4.2	0.0	1.6	151.5	0.0	0.0	457.9	22.8	6.2	0.0	0.0	1.4	0.2	17.0	129.1	131.9
2.2	Deciduous Forest	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			مانيانيون م		·			·										1	
Land Use Curve Number	Subwatershed Id	*	2	3	4	D.	9		8	6	10	11	12	13	14	15	16	17	18

Percent Water Area, Composite Curve Number, and Time of Concentration Calculation

												,						
Tc (min; Lag/CN method)	107	46	51	213	18	78	69	52	155	124.6	98	250	83	139	30	26	65	43
				-		-		,										
Average Subwatershed slope (ff/ft)	0.022	290'0	0.042	900.0	0.067	0.020	0.014	0.020	0.018	0.008	0.025	0.008	0.020	0.010	0.033	0.014	0.030	0.111
																		-
Travel Length (ft)	3100	1800	2300	3600	1200	3000	1700	2000	0009	2000	1500	7000	1700	3000	1000	2500	2600	3500
							,		,			•	-		r			1
Composite Curve Number	54	51	61	22	71	67	61	202	64	54	71	99	47	58	90	90	62	62
															4 1**			T
% Water	63	35	4	0	_	25	0	0	22	19	2	0	0	_	0	2	27	23
																		_
Subwatershed Id	-	2	က	4	3	9	7	8	6	10	11	12	13	14	15	16	17	18

Appendix D

MnRAM Management Classification

Recommended Wetland Management Standards Minnesota Routine Assessment Method for Evaluating Wetland Functions, Version 3.0 Table 1.1

Management				S and a micholis, Version 3.0	3.0
Class	Management Stratem	100			
A-Preserve	Maintain wetland and	Avoid grant Treatment	Buffer ¹	Mitigation Standard	
	existing functions, values	Avoid colliveyed flows where	≥50 feet for	WCA minimum or greater replacement	Hydrologic Guidelines
	and wildlife habitat.	Placent and leasible.	water quality	documented replacement of functions (unline	Bounce (10 yr): Existing
-	Possible need for active	particular protection and	≥100 feet for	Consider requiring huffer replacement	Inundation (1 & 2 vr): Existing
	management of wetland to	required to maintain	wildlife	ייייט מייייט יכיף מכתווניון,	(10 vr): Existing
	protect unique features	Property 1-1-4	habitat, 2		Runout Control: No Change
	Apply strict avoidance	Maintain in its and rates.	Require		Maintain existing hydrology.
	standards. May be	Mailitain existing	monuments		Encourage infiltration and
	appropriate to develor a	flow Amin	to mark		reduced impervious BMPs.
	conservation easement	flows. Avoid concentrating	buffer edge.		Conduct water budget analysis,
B—Manage 1	Maintain wetland without	Droftoot comment			ž
	degrading existing	maintain hadi		WCA minimum or greater replacement	
	functions, values and	inguitair packyround Ioading rafes	35-50 feet	Replacement of functions and values on effect in	Bounce (10 yr): Existing + 0.5 ft
	wildlife habitat. Apply WCA	Section Bridge		location specified in plan for drain/fill/excavation	Inundation (1 & 2 vr): Existing
	sequencing process.		Keduire	impacts.	prus 1 day
-			monuments		(10 VI): Existing + 7 days
			to mark	In compliance with Ch 7050 the option	Runout Control.* No Change
			buffer edge.	affected by storm water or other man	Maintain existing hydrology.
				must be avoided, minimized and marken in the	Encourage infiltration and
				replacement ratio of 1:1 for all changes in mall-	reduced impervious BMPs.
C-Manage 2	Maintain wetland footprint	Drotton of		type.	
	Improve wetland biological	discharges to many		WCA minimum replacement of acreage	
	and plant community	heavy podialo	25-35 feet	functions/values on site or in location considers	Bounce (10 yr): Existing + 1.0 ft
	diversity/integrity or	maximize removal of fine	Require	plan for drain/fill/excavation impacts	Inundation (1& 2 vr): Existing
	enhance other functions if	orained sediment prior to	monuments		prius z days
	possible. Apply WCA	discharging to the wottong	To mark	In compliance with Ch. 7050 the entire area	Burney Existing + 14 days
	sequencing process.	ביביים: פיייפ נס נוופ אפנומונו	Duffer edge.	affected by storm water or other wastewater flour	Tunious Control: 0 to 1.0 ft
	Consider for restoration.			must be avoided, minimized and replaced at a	above existing funout
		••		replacement ratio of 1:1 for all changes in wetland	•
U-Manage 3	Allow for relaxed	Pretreat all conveyed flows		type.	
-	sequencing and	to remove all medium	20 5-11	WCA allows mitigation flexibility with minimum	Rounce (10 mm)
	replacement plan flexibility.	grained and larger	1991 CZ	standards required in the plan area, see M.R.	No Limit
	Consider for	sediments.		8420.0650.	Inundation (4 & 2 vel: Existing
	restoration/enhancement.			22	plus 7 days
				official by the chi. 7050 the entire area	(10 vr): Existing + 21 days
				miss he avoided minimise the wastewater flows	Runout Control. 0 to 4 0 ft
			•	replacement ratio of 1:1 for all all all all all all all all all al	above existing runout
Ruffere	Ruffere are upmoning			type.	

Buffers are unmowed, naturalized strips of vegetation around the wetland perimeter. Buffers would be provided during development or redevelopment of redevelopment or redevelopm

Management Classification